Representations of positive polynomials on noncompact semialgebraic sets via KKT ideals
نویسندگان
چکیده
منابع مشابه
Representations of positive polynomials on non-compact semialgebraic sets via KKT ideals
This paper studies the representation of a positive polynomial f(x) on a noncompact semialgebraic set S = {x ∈ R : g1(x) ≥ 0, · · · , gs(x) ≥ 0} modulo its KKT (Karush-KuhnTucker) ideal. Under the assumption that the minimum value of f(x) on S is attained at some KKT point, we show that f(x) can be represented as sum of squares (SOS) of polynomials modulo the KKT ideal if f(x) > 0 on S; further...
متن کاملRepresentation of Non-negative Polynomials via the Kkt Ideals
This paper studies the representation of a non-negative polynomial f on a non-compact semi-algebraic set K modulo its KKT (Karush-KuhnTucker) ideal. Under the assumption that f satisfies the boundary Hessian conditions (BHC) at each zero of f in K; we show that f can be represented as a sum of squares (SOS) of real polynomials modulo its KKT ideal if f ≥ 0 on K.
متن کاملOptimization of Polynomials on Compact Semialgebraic Sets
A basic closed semialgebraic subset S of Rn is defined by simultaneous polynomial inequalities g1 ≥ 0, . . . , gm ≥ 0. We give a short introduction to Lasserre’s method for minimizing a polynomial f on a compact set S of this kind. It consists of successively solving tighter and tighter convex relaxations of this problem which can be formulated as semidefinite programs. We give a new short proo...
متن کاملMinimizing Polynomials Over Semialgebraic Sets
This paper concerns a method for finding the minimum of a polynomial on a semialgebraic set, i.e., a set in R defined by finitely many polynomial equations and inequalities, using the Karush-Kuhn-Tucker (KKT) system and sum of squares (SOS) relaxations. This generalizes results in the recent paper [15], which considers minimizing polynomials on algebraic sets, i.e., sets in R defined by finitel...
متن کاملRepresentations of Non-negative Polynomials via the Critical Ideals
This paper studies the representations of a non-negative polynomial f on a non-compact semi-algebraic set K modulo its critical ideal. Under the assumption that the semi-algebraic set K is regular and f satisfies the boundary Hessian conditions (BHC) at each zero of f in K. We show that f can be represented as a sum of squares (SOS) of real polynomials modulo its critical ideal if f ≥ 0 on K. P...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 2007
ISSN: 0022-4049
DOI: 10.1016/j.jpaa.2006.05.028